Sample Paper 3 Class- X Exam - 2022-23 Mathematics - Standard

Time Allowed: 3 Hours General Instructions :

- 1. This Question Paper has 5 Sections A-E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section B has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section D has 4 questions carrying 05 marks each.
- 6. Section E has 3 case based integrated units of assessment (04 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E
- 8. Draw neat figures wherever required. Take $\pi = \frac{22}{7}$ wherever required if not stated.

Section - A

Section A consists of 20 questions of 1 mark each.

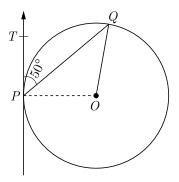
1. If α and β are the zeroes of the polynomial $2x^2 - 13x + 6$, then $\alpha + \beta$ is equal to

(a) -3 (b) 3

- (c) $\frac{13}{2}$ (d) $-\frac{13}{2}$
- 2. If one zero of the polynomial $(3x^2 + 8x + k)$ is the reciprocal of the other, then value of k is (a) 3 (b) -3
 - (c) $\frac{1}{3}$ (d) $-\frac{1}{3}$

3. If 3x + 4y: x + 2y = 9:4, then 3x + 5y: 3x - y is equal to (a) 4:1 (b) 1:4(c) 7:1 (d) 1:7

4. The value of k for which the system of linear equations x + 2y = 3, 5x + ky + 7 = 0 is inconsistent is (a) $-\frac{14}{3}$ (b) $\frac{2}{5}$


(c) 5 (d) 10

5. The roots of the quadratic equation $x^2 - 0.04 = 0$ are

- (a) ± 0.2 (b) ± 0.02
- (c) 0.4 (d) 2

Maximum Marks: 80

- 6. The quadratic equation $2x^2 \sqrt{5}x + 1 = 0$ has
 - (a) two distinct real roots
 - (b) two equal real roots
 - (c) no real roots
 - (d) more than 2 real roots
- 7. Assertion: Sum of first 10 terms of the arithmetic progression $-0.5, -1.0, -1.5, \dots$ is 31. Reason: Sum of *n* terms of an AP is given as $S_n = \frac{n}{2} [2a + (n-1)d]$ where *a* is first term and *d* common difference.
 - (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
 - (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
 - (c) Assertion (A) is true but reason (R) is false.
 - (d) Assertion (A) is false but reason (R) is true.
- 8. If the common difference of an AP is 5, then what is $a_{18} a_{13}$?
 - (a) 5 (b) 20
 - (c) 25 (d) 30
- 9. $\triangle ABC$ is an equilateral triangle with each side of length 2p. If $AD \perp BC$ then the value of AD is
 - (a) $\sqrt{3}$ (b) $\sqrt{3} p$
 - (c) 2p (d) 4p
- 10. In figure, O is the centre of circle. PQ is a chord and PT is tangent at P which makes an angle of 50° with $PQ \angle POQ$ is

(a)	130°	(b) 90°
(c)	100°	(d) 75°

- - If $\cos(\alpha + \beta) = 0$, then $\sin(\alpha \beta)$ can be reduced to

11.

- (a) $\cos\beta$ (b) $\cos 2\beta$
- (c) $\sin \alpha$ (d) $\sin 2\alpha$

12. A tree casts a shadow 15 m long on the level of ground, when the angle of elevation of the sun is 45°. The height of a tree is
(a) 10 m (b) 14 m

- (a) 10 m (b) 14 m
- (c) 8 m (d) 15 m

CBSE Mathematics Class 10

Sample Paper 3

- 13. A sector is cut from a circular sheet of radius 100 cm, the angle of the sector being 240°. If another circle of the area same as the sector is formed, then radius of the new circle is
 - (a) 79.5 cm (b) 81.5 cm
 - (c) 83.4 cm (d) 88.5 cm

14. The base radii of a cone and a cylinder are equal. If their curved surface areas are also equal, then the ratio of the slant height of the cone to the height of the cylinder is

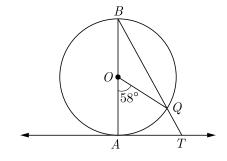
- (a) 2:1 (b) 1:2
- (c) 1:3 (d) 3:1
- 15. In a frequency distribution, the mid value of a class is 10 and the width of the class is 6. The lower limit of the class is
 (a) 6 (b) 7
 - (a) 6 (b) 7 (c) 8 (d) 12
- 16. If a card is selected from a deck of 52 cards, then the probability of its being a red face card is

(a)	$\frac{3}{26}$	(b) $\frac{3}{13}$
(c)	$\frac{2}{13}$	(d) $\frac{1}{2}$

- 17. The point P on x-axis equidistant from the points A(-1,0) and B(5,0) is
 - (a) (2, 0) (b) (0, 2)
 - (c) (3, 0) (d) (-3, 5)
- 18. The point on the x-axis which is equidistant from the points A(-2,3) and B(5,4) is
 - (a) (0, 2) (b) (2, 0)
 - (c) (3, 0) (d) (-2, 0)
- **19.** The distance between the points $(a \cos \theta + b \sin \theta, 0)$, and $(0, a \sin \theta b \cos \theta)$ is (a) $a^2 + b^2$ (b) $a^2 - b^2$ (c) $\sqrt{a^2 + b^2}$ (d) $\sqrt{a^2 - b^2}$

20. Assertion: When a positive integer a is divided by 3, the values of remainder can be 0, 1 or 2. Reason: According to Euclid's Division Lemma a = bq + r, where $0 \le r < b$ and r is an integer.

- (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- (c) Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.


Section - B

Section B consists of 5 questions of 2 marks each.

21. ABCD is a trapezium in which $AB \parallel CD$ and its diagonals intersect each other at the point O. Show that

$$\frac{AO}{BO} = \frac{CO}{DO}.$$

22. In given figure, AB is the diameter of a circle with centre O and AT is a tangent. If $\angle AOQ = 58^{\circ}$, find $\angle ATQ$.

- **23.** Find the value of $\cos 2\theta$, if $2\sin 2\theta = \sqrt{3}$.
- 24. Find the mean of the following distribution :

Class	10-25	25-40	40-55	55-70	70-85	85-100
Frequency	2	3	7	6	6	6

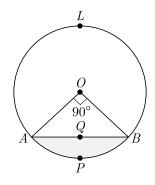
Find the mean of the following data :

Class	0-20	20-40	40-60	60-80	80-100	100-120
Frequency	20	35	52	44	38	31

25. Show that $5\sqrt{6}$ is an irrational number.

OR

Write a rational number between $\sqrt{2}$ and $\sqrt{3}$.


Section - C

Section C consists of 6 questions of 3 marks each.

- **26.** Which term of the AP 20, $19\frac{1}{4}$, $18\frac{1}{2}$, $17\frac{3}{4}$, ... is the first negative term.
- 27. If $1 + \sin^2 \theta = 3\sin\theta\cos\theta$, prove that $\tan \theta = 1$ or $\frac{1}{2}$.
- 28. A horse is tethered to one corner of a rectangular field of dimensions $70 \text{ m} \times 52 \text{ m}$, by a rope of length 21 m. How much area of the field can it graze?

OR

In the given figure, a chord AB of the circle with centre O and radius 10 cm, that subtends a right angle at the centre of the circle. Find the area of the minor segment AQBP. Hence find the area of major segment ALBQA. (Use $\pi = 3.14$)

29. Find the mode of the following frequency distribution :

Class	15-20	20-25	25-30	30-35	35-40	40-45
Frequency	3	8	9	10	3	2

30. Find the ratio in which the segment joining the points (1, -3) and (4, 5) is divided by x-axis? Also find the coordinates of this point on x-axis.

OR

The vertices of $\triangle ABC$ are A(6, -2), B(0, -6) and C(4, 8). Find the co-ordinates of mid-points of AB, BC and AC.

31. Write the smallest number which is divisible by both 306 and 657.

Section - D

Section D consists of 4 questions of 5 marks each.

32. Determine graphically the coordinates of the vertices of triangle, the equations of whose sides are given by 2y - x = 8, 5y - x = 14 and y - 2x = 1.

OR

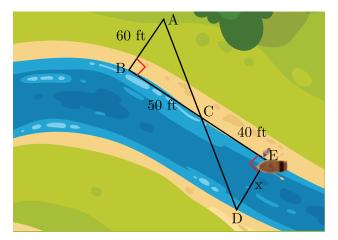
Draw the graphs of the equations x - y + 1 = 0 and 3x + 2y - 12 = 0. Determine the co-ordinates of the vertices of the triangle formed by these lines and the X-axis and shade the triangular region.

- **33.** Two tangents *PA* and *PB* are drawn from an external point *P* to a circle with centre *O*, such that $\angle APB = \angle x$ and $\angle AOB = y$. Prove that opposite angles are supplementary.
- **34.** The person standing on the bank of river observes that the angle of elevation of the top of a tree standing on opposite bank is 60°. When he moves 30 m away from the bank, he finds the angle of elevation to be 30°. Find the height of tree and width of the river.

OR

As observed from the top of a 100 m high light house from the sea-level, the angles of depression of two ships are 30° and 45° . If one ship is exactly behind the other on the same side of the light house, find the distance between the two ships [Use $\sqrt{3} = 1.732$]

35. A hemispherical depression is cut from one face of a cubical block, such that diameter l of hemisphere is equal to the edge of cube. Find the surface area of the remaining solid.


Section - E

Case study based questions are compulsory.

- **36.** Maximum Profit : A kitchen utensils manufacturer can produce up to 200 utensils per day. The profit made from the sale of these utensils can be modelled by the function P(x) = -0.5x + 175x 330, where P(x) is the profit in Rupees, and x is the number of utensils made and sold. Based on this model,
 - (i) Find the *y*-intercept and explain what it means in this context.
 - (ii) Find the *x*-intercepts and explain what they mean in this context.
 - (iii) How many utensils should be sold to maximize profit?
 - (iv) What is the maximum profit?

37. Tania is very intelligent in maths. She always try to relate the concept of maths in daily life. One day she plans to cross a river and want to know how far it is to the other side. She takes measurements on her side of the river and make the drawing as shown below.

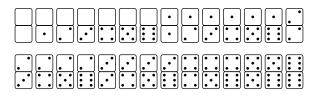
- (i) Which similarity criterion is used in solving the above problem ?
- (ii) Consider the following statement :

$$S_1 : \angle ACB = \angle DCE$$

 $S_2 : \angle BAC = \angle CDE$ Which of the above statement is/are correct. (a) S_1 and S_2 both (b) S_1

(c)
$$S_2$$
 (d) None

(iii) Consider the following statement :


$$S_3 : \frac{AB}{DE} = \frac{CA}{CD}$$
$$S_4 : \frac{BC}{CE} = \frac{AB}{DE}$$
$$a = \frac{CA}{DE}$$

$$S_5: \frac{OH}{CD} = \frac{DB}{AB}$$

Which of the above statements are correct ?

- (a) S_3 and S_5 (b) S_4 and S_5
- (c) S_3 and S_4 (d) All three
- (iv) What is the distance x across the river?
- (v) What is the approximate length of AD shown in the figure?
- **38.** Double-six Dominos : It is a game played with the 28 numbered tiles shown in the diagram.

The 28 dominos are placed in a bag, shuffled, and then one domino is randomly drawn. Give the following answer.

- (i) What is the probability the total number of dots on the domino is three or less ?
- (ii) What is the probability the total number of dots on the domino is greater than three ?
- (iii) What is the probability the total number of dots on the domino does not have a blank half?
- (iv) What is the probability the total number of dots on the domino is not a "double" (both sides the same) ?